
AUDIT

MultiFunctional Environmental Token
- Stake.sol

September 22th, 2022.



TABLE OF CONTENTS

I. SUMMARY

II. OVERVIEW

III. FINDINGS

A. CENT-1 | Centralization of major privileges

B. MATH-1 | Divide before multiply

C. THRE-3 | Missing threshold checks

D. COMP-1 | Unlocked compiler versions

E. FUNC-1 | Unused functions

F. GAS-2 | Overly long error messages

G. MSG-1 | Missing event emits

H. MSG-2 | Limited NatSpec comments

IV. DISCLAIMER

2



AUDIT SUMMARY

This report was written for MultiFunctional Environmental Token in order

to find flaws and vulnerabilities in the MultiFunctional Environmental

Token project's source code, as well as any contract dependencies that

weren't part of an officially recognized library given they were provided.

A comprehensive examination has been performed, utilizing Static

Analysis, Manual Review, and MultiFunctional Environmental Token

Deployment techniques. The auditing process pays special attention to

the following considerations:

❖ Testing the smart contracts against both common and uncommon

attack vectors

❖Assessing the codebase to ensure compliance with current best

practices and industry standards

❖ Ensuring contract logic meets the specifications and intentions of

the client

❖Cross referencing contract structure and implementation against

similar smart contracts produced by industry leaders

❖ Through line-by-line manual review of the entire codebase by

industry expert

3



AUDIT OVERVIEW

PROJECT SUMMARY

Project name MultiFunctional Environmental Token

Description MFET is an ecosystem that provides
consultancy to companies in their
environmental works as an environmentally
friendly token supporting sustainable
projects.

Platform BNB Smart-chain

Language Solidity

Codebase Main.sol
https://bscscan.com/address/0x6d23970ce3
2Cb0F1929bECE7C56D71319e1b4F01
Stake.sol
https://bscscan.com/address/0xe0cd1e9820
001faff0c98935dae500471f92c6e1
Lock.sol
https://bscscan.com/address/0x3b7f0d2BaB
984c9dbc70F53Ef0B5C65a8E86c463

4

https://bscscan.com/address/0x6d23970ce32Cb0F1929bECE7C56D71319e1b4F01
https://bscscan.com/address/0x6d23970ce32Cb0F1929bECE7C56D71319e1b4F01
https://bscscan.com/address/0xe0cd1e9820001faff0c98935dae500471f92c6e1
https://bscscan.com/address/0xe0cd1e9820001faff0c98935dae500471f92c6e1
https://bscscan.com/address/0x3b7f0d2BaB984c9dbc70F53Ef0B5C65a8E86c463
https://bscscan.com/address/0x3b7f0d2BaB984c9dbc70F53Ef0B5C65a8E86c463


FINDINGS SUMMARY

Vulnerability Total Resolved

● Critical 0 0

● Major 0 0

● Medium 3 0

● Minor 1 0

● Informational 4 0

5



EXECUTIVE SUMMARY

There have been no critical issues related to the codebase and all

findings listed here range from informational to medium. The medium

security problems are the following: Centralization of major privileges,

Divide before multiply, and Missing threshold checks.

6



AUDIT FINDINGS

Code Title Severity

CENT-1 Centralization of major privileges ● Medium

MATH-1 Divide before multiply ● Medium

THRE-3 Missing threshold checks ● Medium

COMP-1 Unlocked compiler versions ● Minor

FUNC-1 Unused functions ● Informational

GAS-2 Overly long error messages ● Informational

MSG-1 Missing event emits ● Informational

7



MSG-2 Limited NatSpec comments ● Informational

8



CENT-1 | Centralization of major privileges

Description

The onlyOwner modifier of the smart contract(s) gives major privileges

over it (modify transfer fees)*. This can be a problem, in the case of a

hack, an attacker who has taken possession of this privileged account

could damage the project and the investors.

*This list is not exhaustive but presents the most sensitive points

Recommendation

We recommend at least to use a multi-sig wallet as the owner address,

and at best to establish a community governance protocol to avoid such

centralization. For more information, see https://solidity-by-example.org

/app/multi-sig-wallet/

9

https://solidity-by-example.org/app/multi-sig-wallet/
https://solidity-by-example.org/app/multi-sig-wallet/


MATH-1 | Divide before multiply

Description

Certain operations in MultiFunctional Environmental Token's contract

perform both multiplication and division operations on a variable, some

instances of which perform division before multiplication. This is not best

practice and should be avoided where possible, as it could lead to

rounding errors. Where these division first operations have been

identified are listed below.

❖ Stake.sol

➢ line -> 642-643, 650-652

➢ line -> 650-652, 656

Recommendation

We recommend these found operations be modified to perform

multiplication first and then division, in most cases simply swapping the

division and multiplication operations should be sufficient however any

changes made should be tested.

10



THRE-3 | Missing threshold checks

Description

Functions which can change sensitive variables within MultiFunctional

Environmental Token’s contract do not contain threshold checks to

ensure these variables are not changed to unreasonable values. This

includes fees. As such it is important to add a threshold to prevent an

attacker from setting fees as 100% easily. Key examples of Identified

functions with this issue have been listed below:

❖ Stake.sol

➢ setStakeFee -> Line 472

➢ setEmergencyWithdrawFee -> Line 463

➢ setStakePlus -> Line 443

Recommendation

We recommend adding threshold checks using require statements for

each of the identified functions above and other functions with this issue.

11



COMP-1 | Unlocked compiler version

Description

MultiFunctional Environmental Token’s contract does not have locked

compiler versions, meaning a range of compiler versions can be used.

This can lead to differing bytecodes being produced depending on the

compiler version, which can create confusion when debugging, as bugs

may be specific to a specific compiler version(s).

Recommendation

To rectify this, we recommend setting the compiler to a single version,

the version tested the most to be compatible with the code, an example

of this change can be seen below.

pragma solidity 0.8.0;

12



FUNC-1 | Unused functions

Description

Multiple functions within MultiFunctional Environmental Token’s contract

are defined as private or internal but are never called within the contract.

This wastes contract space as there is a maximum size a contract can

have. Functions found with this issue have been listed below:

❖ Stake.sol

➢ safeIncreaseAllowance -> Line 314

➢ safeDecreaseAllowance -> Line 330

➢ safeApprove -> Line 299

➢ _msgData -> Line 60

➢ sendValue -> Line 146

➢ functionStaticCall -> Line 219

➢ functionStaticCall -> Line 206

➢ functionDelegateCall -> Line 242

➢ functionDelegateCall -> Line 230

➢ functionCallWithValue -> Line 174

➢ functionCall -> Line 159

13



Recommendation

We recommend safely removing these functions from the contract.

14



GAS-2 | Overly long error messages

Description

The smart contract has some error messages that are too long. The

industry standards specify error messages must have a maximum length

of 32 bytes. We recommend having the short error messages within 32

bytes to optimize gas costs. Require statements with this issue have

been listed below:

❖ Stake.sol

➢ line -> 82

➢ line -> 224

➢ line -> 247

➢ line -> 552

➢ line -> 598

➢ line -> 617

➢ line -> 654

➢ line -> 777

➢ line -> 837

15



Recommendation

We recommend shortening these error messages to be 32 characters or

less in length.

16



MSG-1 | Missing event emits

Description

Some functions within MultiFunctional Environmental Token’s contracts

modify sensitive variables without emitting an event. Functions with this

issue are listed below:

❖ Stake.sol

➢ setStakeFee -> Line 472

➢ setEmergencyWithdrawFee -> Line 463

➢ setStakePlus -> Line 443

Recommendation

We recommend amending these functions to include event emits to

ensure transparency with users.

17



MSG-2 | Limited NatSpec comments

Description

Throughout MultiFunctional Environmental Token’s contracts many

functions remain uncommented. This can make understanding the

code’s functionality difficult for developers and users (if the code is open

source) thus reducing maintainability.

Recommendation

We recommend using NetSpec standard comments throughout all of

MultiFunctional Environmental Token’s contracts.

See: https://docs.soliditylang.org/en/v0.5.17/style-guide.html?highlight=natspec%23natspec

18

https://docs.soliditylang.org/en/v0.5.17/style-guide.html?highlight=natspec%23natspec


Global security warnings

These are safety issues for the whole project. They are not necessarily
critical problems but they are inherent in the structure of the project
itself. Potential attack vectors for these security problems should be
monitored.

CENT-1 | Global SPOF (Single Point Of Failure)

The project's smart contracts often have a problem of centralized
privileges. The owner system in particular can be subject to attack. To
address this security issue we recommend using a multi-sig wallet,
establishing secure project administration protocols and strengthening
the security of project administrators.

Compliance with industry standards

The way the contract is developed and its compliance with industry
standards are part of the project. In order to increase the optimization of
the latter, we recommend refining the code to best fit industry best
practices, in particular the use of error messages and library utilization.

19



DISCLAIMER

This report is subject to the terms and conditions (including without limitation,

description of services, confidentiality, disclaimer and limitation of liability) set

forth in the Services Agreement, or the scope of services, and terms and

conditions provided to the Company in connection with the Agreement.

This report provided in connection with the Services set forth in the

Agreement shall be used by the Company only to the extent permitted under

the terms and conditions set forth in the Agreement.

This report may not be transmitted, disclosed, referred to or relied upon by

any person for any purposes without Safetin's prior written consent.This

report is not, nor should be considered, an “endorsement” or “disapproval”

of any particular project or team. This report is not, nor should be considered,

an indication of the economics or value of any “product” or “asset” created

by any team or project that contracts Safetin to perform a security

assessment.

This report does not provide any warranty or guarantee regarding the

absolute bug-free nature of the technology analyzed, nor do they provide any

indication of the technologies proprietors, business, business model or

legal compliance. This report should not be used in any way

20



Safetin security assessment to make decisions around investment or

involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as

investment advice of any sort. This report represents an extensive assessing

process intending to help our customers increase the quality of their code

while reducing the high level of risk presented by cryptographic tokens and

blockchain technology.

Blockchain technology and cryptographic assets present a high level of

ongoing risk. Safetin's position is that each company and individual are

responsible for their own due diligence and continuous security. Safetin's goal

is to help reduce the attack vectors and the high level of variance associated

with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or fun.

21


